If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22x^2+39x+10=0
a = 22; b = 39; c = +10;
Δ = b2-4ac
Δ = 392-4·22·10
Δ = 641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-\sqrt{641}}{2*22}=\frac{-39-\sqrt{641}}{44} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+\sqrt{641}}{2*22}=\frac{-39+\sqrt{641}}{44} $
| 3(22x^2+39x+10)=0 | | 9x+(7(12-x)/3)=48 | | 5x^2+6x+20=0 | | 2x×x=1200 | | -y-9=18 | | (3/5)(x-10)=11 | | 2L+2w=48;L=W+6 | | x*2x=1200 | | (2x+2x)+(x+x)=1200 | | 2x+9/43=27 | | 2x+45=9x-25 | | 25(0)=-5(-5y) | | 3-x/3+2x=4+x+1/2 | | 8-×=5x+20 | | (5x-7)(-6x+9)=0 | | -1/3x+7=3/5x-7 | | 14=-1/5x | | 25y=-5(-5y) | | x^2+1/2x-75=0 | | X+5(-0.2x)=0 | | X+5(-0.2x=0 | | 2(64y)+y=27 | | y=15-8(6) | | 9.4=0.5^n | | 4y-9+7y+2=6y-3 | | x+2=1/2x+20 | | 7x+3-8x=8 | | 35=-2x-9 | | 3x2+64=33x-8 | | 10=9x-35 | | -4=8-3y | | 5=14+3x |